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Abstract 

Endogenous neuropeptides orexins (hypocretins) play an important role in the 

regulation of feeding, drinking, endocrine function and sleep-wakefulness. The orexin 

neuron projection sites include the rostral ventrolateral medulla of brainstem related to 

the control of breathing. Previous studies suggest that orexins modulate the central CO2 

response of ventilation during wakefulness in the rodent. These led us to examine 

effects of orexinergic system on central respiratory control by addition of orexin into the 

superfusion medium in the isolated brain stem-spinal cord of the neonatal rat in the 

present study. The application of Orexin B resulted in dose-dependent increases in C4 

burst rate via brainstem, not via spinal cord. The increases in C4 burst rate induced 

concomitant increases in the depolarizing cycle rate of preinspiratory (Pre-I) neurons 

and inspiratory (Insp) neurons. The rhythmic bursts of C4 and Pre-I neurons finally 

became to be tonic, although the rhythmic bursts of Insp neurons were maintained. 

Expiratory (Exp) neurons were also depolarized by the application of Orexin B. Our 

findings indicate that Orexin B activates central respiratory activity mainly through 

depolarizing and decreasess in membrane resistance of Pre-I neurons and Insp neurons, 

and possibly through early start of expiratry phase induced by depolarization of Exp 

neurons.  
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Highlights 

 

We analyse effects of orexin on central respiratory control using the isolated 

brainstem-spinal cord preparation of newborn rats. Orexin produces dose-dependent 

increases in C4 burst rate via brainstem. The increases in C4 respiratory activities are 

induced by orexin-induced depolarization of pre-inspiratory and inspiratory neurons.  
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Introduction 

Endogenous neuropeptides orexins (hypocretins) play an important role in the 

regulation of feeding, drinking, endocrine function and sleep/wakefulness (Gastreau 

2008). Additionally, both anatomical and functional evidences indicate that orexins are 

related to the regulation of breathing (Corcoran 2010).  

Orexin is synthesized by neurons of the lateral hypothalamus (Sakurai 1998). These 

Orexin neurons projects to the ventrolateral medulla and phrenic nuclei of the 

respiratory network with dense fiber (Young JK 2005), indicating that orexin is possibly 

included in respiratory regulation. In fact, the intracerebroventricular injection of orexin 

induces increases in ventilation (Zhang et al. 2005). Furthermore, previous studies 

indicates that orexin-containing axonal projections innervate the spinal cord (Date 2000; 

Hervieu 2001). However, little is known as to how they work in central respiratory 

control in brainstem (Gastreau 2008) and how they modulate respiratory activities 

through the spinal cord.  

In the present study, we examined effects of orexinergic system on central respiratory 

control at the level of respiratory neurons and spinal cord by addition of orexin B into 

the superfusion medium in the isolated brain stem-spinal cord of the neonatal rat. 
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Method 

All procedures were conducted in accordance with the guidelines of the institutional 

scientific committee. Data were obtained from 45 neonatal rats (0–4 days old, Wistar 

rats). 

 

Isolated brainstem–spinal cord preparation 

The isolated brainstem–spinal cord preparation has been described in detail elsewhere 

(Sakuraba et al., 2003). In brief, the rats were deeply anesthetized with diethyl ether, and 

the brainstem and cervical spinal cord segment C6 were isolated in a chamber filled with 

oxygenated artificial cerebrospinal fluid (ACSF). The cerebellum and pons were ablated. 

The preparation was transferred to a 2 ml recording chamber, and fixed, ventral side up, 

to a silicon rubber base with miniature pins. The preparation was superfused at 25-26 °C 

with control ACSF equilibrated with a control gas mixture (2% CO2 in O2; pH = 7.8) at a 

flow rate of 4ml/min. This relatively alkaline superfusate allowed the tissue pH of the 

superficial (<400 µm) medullary layer to be maintained in the physiological range 

(Okada et al., 1993). The composition of the ACSF was (in mM) 126 NaCl, 5 KCl, 1.25 

NaH2PO4, 1.5 CaCl2, 1.3 MgSO4, 26 NaHCO3 and 30 glucose. C4 ventral root activity 

was recorded using a glass suction electrode, amplified with a conventional AC amplifier 

(AVH 11, Nihon Kohden, Tokyo, Japan), and integrated (time constant: 100 ms). The 

signals were recorded on a thermal array recorder and stored on digital tape for 

subsequent analysis. 

The C4 respiratory rate and peak amplitude (Integ. C4) were measured. 

 

Neuronal recording 



The intracellular activity of inspiratory (Insp), preinspiratory (Pre-I) and expiratory (Exp) 

neurons in the superficial (<400µm) rostral ventrolateral medulla (RVLM) was recorded 

using a perforated patch clamp technique (Kuwana et al., 1998). Neurons were identified 

and classified on the basis of their firing patterns and the temporal correlation of their 

activity to the respiratory cycle of C4 ventral root activity (Onimaru et al., 1997). Insp 

neurons discharge action potentials during the inspiratory phase (C4 burst activity phase) 

(Fig. 3A). Pre-I neurons are characterized by preinspiratory and postinspiratory action 

potential discharges and hyperpolarization during the inspiratory phase (Fig. 3B). Exp 

neurons discharge action potentials between inspiratory phases, and hyperpolarize during 

the inspiratory phase. A glass pipette (GC100-TF-10, Clark, Reading, UK) was pulled 

with a horizontal puller (PA-91, Narishige, Tokyo, Japan) to a tip size of approximately 

2µm. Electrode resistance ranged from 12 to 16MΩ when the pipette was filled with a 

solution containing (in mM) 140 K-gluconate, 3 KCl, 10 EGTA, 10 HEPES, 1 CaCl2, 1 

MgCl2, and nystatin (100 µg/ml). pH was maintained at 7.2–7.3 using KOH. The 

micropipette was inserted into the RVLM using a manual hydraulic micromanipulator. 

Membrane potentials were recorded using a single-electrode voltage clamp amplifier 

(CEZ 3100, Nihon Kohden, Tokyo, Japan). Neurons were located by applying positive 

pressure (10–20 cm H2O) inside the pipette. After a gigaohm seal was obtained, the 

recorded membrane potential gradually became negative, and stabilized in about 10 min. 

The membrane potential was presented without correcting the liquid junction potential. 

The resulting perforated patch recording remained stable for more than 60 min. 

 

Protocol 

Experiment-1  



We analysed the effects of orexin B on C4 respiratory rate and Integ. C4. After the 

preparation was superfused with control ACSF (CO2 fraction 2%) for at least 30 min and 

C4 activity reached a steady state, the control superfusate was replaced by a test solution: 

a control group and three orexin B (Peptide Institute, Osaka, Japan）groups at 

concentrations 0.01, 0.1, or 1.0µM; each group contained 5 preparations. In the orexin B 

groups, after obtaining a baseline recording, the superfusate was replaced by solution 

containing orexin B at the specified concentration, and recording was resumed for 10 

min, followed by a washout period using the control ACSF for 10 min. .  

 

Experiment-2  

We used a separate perfusion system (Sakuraba et al., 2003) to distinguish the action of 

orexin B on medulla and spinal cord. The brainstem–spinal cord was separated between 

the medulla and C1 roots, and separately perfused with control ACSF and ACSF 

containing 0.1µM orexin B. Ten preparations were randomly allocated to medulla 

perfusion group or spinal cord perfusion group. Each group contained 5 preparations. 

  

Experiment-3 

We analyzed the effect of orexin B on Insp, Pre-I and Exp neurons in the medulla. After 

the control recording, control ACSF was changed to ACSF containing 0.1µM orexin B 

for 10 min, followed by a 10 min washout period using control ACSF. Intraburst firing 

frequencies and resting membrane potential of Pre-I and Exp neurons are represented by 

the mean firing frequency during the expiratory phase, and intraburst firing frequencies 



and resting membrane potential of Insp neurons are represented by the mean firing 

frequency during the inspiratory phase. 

 

Statistical analyses 

All data before and during the application of orexin B were analyzed using the paired 

t-test. A one-way ANOVA with Tukey-Kramer test was used to compare values between 

different concentration groups. P < 0.05 was considered significant. Data are expressed 

as mean ± SD.   

 



Results 

Experiment-1 

Integ. C4 burst rates were significantly increased by orexin B 0.1 µM (from 3.80 ± 0.57 

to 4.80 ± 0.58 bursts/min; 127.2% ± 13.7% of control; P < 0.05; n = 4) and orexin B 1.0 

µM (from 4.37 ± 0.47 to 5.90 ± 0.28 bursts/min; 137.3% ± 20.0% of control; P < 0.001; 

n = 6) , however, orexin B 0.01 µM did not (from 4.33 ± 0.42 to 4.25 ± 0.36 bursts/min; 

98.4% ± 8.46% of control; n = 6) (Fig.1A-C). These orexin-induced changes of Integ. 

C4 burst rates were resulted in dose-dependent manner (Fig.1D).  

And, of further interest, we found that C4 tonic discharge was induced by the 

application of orexin B 0.1 µM and 1.0 µM in all preparations (Fig.1B,C). The C4 

amplitude did not significantly change in any concentration of orexin B (Fig.1A-C).  

 

Experiment-2 

The application of Orexin B 0.1 µM to the medulla, Integ. C4 burst rate significantly 

increased (from 2.58 ± 0.99 to 4.98 ± 1.21 bursts/min; Fig.2 A; P <0.01), however, 

orexin B 0.1 µM to the spinal cord did not (from 4.04 ± 0.68 to 4.20 ± 1.20 bursts/min; 

Fig.2 B).  

On the other hand, Orexin B 0.1 µM did not induce any significant changes in the the 

C4 amplitude in both to medulla group (96.1 ± 9.99 % of control; Fig.2 A) and to spinal 

cord group (104.0 ± 16.4% of control; Fig.2 B). Interestigly, we found that C4 tonic 

discharge was induced by the application of orexin B 0.1 µM only to spinal cord, not to 

medulla.  

 

 



 

Experiment-3 

We analysed the effects of orexin B 0.1 µM on 16 respiratory neurons in RVLM. We 

classified these neurons into three groups—Insp, Pre-I and Exp—based on their firing 

patterns during perfusion with control ACSF. The application of orexin B 0.1 µM 

significantly increased Integ. C4 burst rate from 5.14 ± 1.78 to 7.54 ± 1.99 (P < 0.0001; 

n = 16).  

 

3.1 Effects of NMBAs on Insp neurons and Pre-I neurons 

Orexin B 0.1 µM induced a synchronous increases in C4 respiratory rate and rhythmic 

burst rate in Insp neurons and Pre-I neurons in the early stage of orexin B effects from 

5.74 ± 1.65 to 6.98 ± 1.59 ( P < 0.05; n = 5) and from 5.12 ± 1.36 to 8.05 ± 1.66 ( P < 

0.01; n = 6). Finally, rhythmic C4 burst became to be tonic even though rhythmic burst 

of Insp neuron and Pre-I neurons were maintained in all preparations (Fig. 3A, B). Also,  

Orexin B 0.1 µM induced significant decreases in input membrane resistance and 

depolarization in Insp neurons and Pre-I neurons during orexin-induced respiratory 

acceleration (Fig. 3A, B; Table).  

 

3.2. Effects of NMBAs on Exp neurons 

In Exp neurons, input membrane resistance was slightly decreased by the application of 

Orexin B 0.1 µM, but the difference was not significant (Fig. 3C; Table; P = 0.18), 

although orexin B 0.1 µM induced significant depolarization in Exp neurons (Fig. 3C; 

Table; P < 0.0001). The rhythmic inhibitory potential cycle rate of Exp neurons was 

synchronously increased with C4 respiratory rate by the application of orexin B 0.1 µM 



(Fig. 3C).  



Disscussion 

We have demonstrated that orexin B induce dose-dependent increases in C4 respiratory 

rate in the isolated brainstem-spinal cord preparations of newborn rats, and these 

increases in C4 respiratory rate are synchronous with increases in depolarizing cycle 

rate of Pre-I neurons and Insp neurons. Orexin B activates central respiratory activity 

mainly through depolarizing and decreasess in membrane resistance of Pre-I neurons 

and Insp neurons, and possibly through early start of expiratry phase induced by 

depolarization of Exp neurons. Also, we found that orexin B induces C4 tonic discharge 

with no effects on the amplitude of C4, indicating that orexin B possibly induces direct 

effects on spinal cord.  

 

In the in vivo model, activation of orexin receptors at different levels of the brainstem 

and spinal cord elicits breathing activity differently. Although stimulation of the 

hypothalamus (Kayaba Y et al., 2003) and microinjection of orexin into pons induces 

increases in respiratory frequency (Dutschmann M et al. 2007), microinjection of orexin 

into the ventrolateral medulla including central respiratory control increases the tidal 

volume without any effects on respiratory frequency (Young JK et al. 2005; Liu ZB et al. 

2010). Contraly, in the isolated brainstem-spinal cord preparations of newborn rats, 

hypothalamus where orexin is synthesized (Sakurai T et al. 1998) and sends dense fiber 

projections to many brain regions including central respiratory control (Gestreau C et al. 

2008) and pons are ablated (Okada Y et al. 1998). Therefore, it is the most ideal model 

to analyse the pure effects of orexin on central respiratory control and phrenic activities.   

Our result that orexin induces increases in respiratory frequency without any 

effects on C4 amplitude is contradictory to the above in vivo results orexin 



microinjected into the ventrolateral medulla increases the tidal volume without any 

effects on respiratory frequency (Young JK et al. 2005; Liu ZB et al. 2010). In general,  

removal of the vagal afferent inputs (Onimaru H, 1995) induce changes in respiratory 

frequency, not amplitude, by the application of some drugs in the isolated 

brainstem-spinal cord preparations of newborn rats. On the other hand, respiratory 

stimulator increases only the amplitude of inspiratory activity without vagal feedback in 

the in vivo (Eugenin J et al. 2001). Therefore, our results in the in vitro preparation are 

consistent with the past results in the in vivo study.   

It is found that projections of orexin-containing neurons to respiratory-related 

brain stem regions and neurons of the pre-Bötzinger complex express orexin receptors 

(Young JK wt al. 2005). As mentioned above, it is also found that orexin produces 

increases in respiratory activities, although respiratory neuronal mechanisms are not 

analysed. In the present study, we could demonstrate that orexin activates central 

respiratory activity mainly through depolarizing and decreasess in membrane resistance 

of Pre-I neurons and Insp neurons, and possibly through early start of expiratry phase 

induced by depolarization of Exp neurons. Orexin possibly lowers the membrane 

resistance of these respiratory neurons by opening some channel of respiratory neurons 

and then induces depolarization of these neurons. However, further studies are needed 

to analyse these channel mechanisms.  

 

Orexin does not induce any significant changes in the C4 amplitude but C4 

tonic discharge is induced by the application of orexin only to spinal cord, indicating 

that orexin might modulate respiration-unrelated lumbar motoneurons by several 

pathways. Orexin receptors produce neuroexcitation by post-synaptic depolarization via 



activation of non-selective cation channels, inhibition of K
+
 chanels, activation of 

Na+/Ca
2+

-excahnge and Ca
2+

 influx via L-type Ca
2+

 chanel activation (Kukkonen JP 

and Leonard CS. 2013;  Wu WN et al. 2013). Also, inhibition of 

hyperpolarization-activated/cyclic nucleotide-gated chasnnels and enhancement of 

excitation of pyramidal neurons in prelimbic cortex (Li B et al. 2010) might be related 

to orexin-induced C4 tonic discharges. Further studies are needed to analyse the 

mechanisms of these orexin-induced C4 tonic discharge.     

 

In conclusion, orexin produces dose-dependent increases in C4 burst rate via brainstem, 

not via spinal cord. The increases in C4 burst rate induced concomitant increases in the 

depolarizing cycle rate of Pre-I neurons and inspiratory Insp neurons. The rhythmic 

bursts of C4 and Pre-I neurons finally became to be tonic, although the rhythmic bursts 

of Insp neurons were maintained. Exp neurons were also depolarized by the application 

of Orexin. Orexin activates central respiratory activity mainly through depolarizing and 

decreasess in membrane resistance of Pre-I neurons and Insp neurons, and possibly 

through early start of expiratry phase induced by depolarization of Exp neurons.  
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Figure legend 

 

Fig.1 Effects of orexin B on the C4 respiratory activity 

Representative sample tracing of integrated C4 activity before, during and after 

superfusion with control and orexin B solution at concentrations 0.01µM (A), 0.1µM 

(B), and 1.0µM (C). Higher concentrations of orexin B tended to produce significant 

increase in C4 burst rate in dose-dependent manner (D). *P ＜ 0.05 vs control, **P ＜ 

0.05 between different concentration groups) 

 

Fig.2 Effect of orexin B on the medulla and the spinal cord 

Representitive sample tracing of integrated C4 activity before, during and after separate 

superfusion with 0.1µM orexin B solution (A: medulla, B: spinal cord). C4 burst rate  

increases after application of orexin B 0.1µM (A). C4 tonic discharge were observed in 

all preparation of spinal cord groups (A), however, it was not observed in any 

preparation of medulla groups (B).  

 

Fig.3  

Representitive sample tracing of inspiratory neuron (A), preinspiratory neuron (B) and 

expiratory neuron (C) with integrated C4 activity before, during and after superfusion 

with 0.1µM orexin B solution.  
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Table  

 Em: resting membrane potential; Ri: input membrane resistance 

 * P < 0.05 

** P < 0.01 

*** P < 0.0001 

 

Table    

Effects of orexin B on resting membrane potential and membrane resistance of respiratory neurons 

  control 0.1µM Orexin 

Insp neurons (n = 5) 

Em (mV) -63.6 ± 18.1 -56.4 ± 17.1** 

Ri (MΩ) 484.0 ± 185.1 322.0 ± 113.2* 

Pre-I neurons (n = 6) 

Em (mV) -62.0 ± 7.7 -55.3 ± 8.0** 

Ri (MΩ) 540.0 ± 207.8 426.7 ± 206.9** 

Exp neurons (n = 5) 

Eml (mV) -55.4 ± 19.1 -48.2 ± 20.0*** 

Ri (MΩ) 640 ± 306.9 494.0 ± 251.2 

Table


